Engineering Plant Resistance to Thiazopyr Herbicide via Expression of a Novel Esterase Deactivation Enzyme

نویسندگان

  • Paul C. C. Feng
  • Thomas G. Ruff
  • Shaukat H. Rangwala
  • Sudabathula R. Rao
چکیده

Plants were engineered to confer resistance to thiazopyr, a member of the pyridine herbicide family, via an esterase deactivation mechanism. Earlier studies showed that transformation of thiazopyr to its monoacid metabolite resulted in loss of herbicidal activity (P.C.C. Feng et al., 1995, Xenobiotica 35, 27). Based on thiazopyr hydrolytic activity, a 60-kDa esterase was purified from rabbit liver. The N-terminal amino acid sequence of purified pyridine-esterase demonstrated high homology to the published protein sequence of rabbit liver esterase isozyme 1 (RLE1). PCR primers designed based on the amino acid sequence of RLE1 recovered a novel cDNA (RLE3) whose derived amino acid sequence was 95% homologous to RLE1. Baculovirus-mediated expression of RLE3 cDNA in insect cells detected the 60-kDa esterase as well as activity against thiazopyr. Stable plant transformation of RLE3 cDNA was conducted in tomato and tobacco under a constitutive expression promotor. R0 plants demonstrated wild-type phenotype, and analysis of leaf tissues confirmed the presence of the 60-kDa esterase. Transgenic seedlings demonstrated both in vitro and in vivo deactivation of thiazopyr to the monoacid. In growth chamber and greenhouse tests, R1 seedlings from transgenic tomato and tobacco demonstrated enhanced resistance to thiazopyr. Resistance was directly correlated to the level of pyridine-esterase expression. A field study was conducted with transgenic tomato seedlings which further confirmed resistance to thiazopyr. q1997 Academic Press

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glyphosate Tolerance in Transgenic Canola by a Modified Glyphosate Oxidoreductase (gox) Gene

The engineering of transgenic canola (Brassica napus L. ) to make tolerance to the broad-spectrum herbicide, glyphosate, is one of the most effective approaches for weed management. Glyphosate inhibits the enzyme EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) enzyme which functions in the shikimate pathway and has a key role in biosynthesis of aromatic amino acids required for survival of ...

متن کامل

Biochemical Characterization of A Novel Thermophilic Esterase Isolated from Shewanella sp F88

The main objective of this study was to purify and characterize an esterase from Shewanella sp F88. The enzyme was purified 41-fold and an overall yield of 21 %, using a two-step procedure, including ammonium sulfate precipitation and Q-sepharore chromatography. Molecular weight of the enzyme was 62.3 kDa according to SDS-PAGE data. The enzyme showed an optimum activity at pH 6.5 and 58 ˚C. Evo...

متن کامل

Regeneration of Glyphosate-Tolerant Nicotiana tabacum after Plastid Transformation with a Mutated Variant of Bacterial aroA gene

Presence of antibiotic resistance markers has always been considered as one of the main safety concerns in transgenic plants and their derived products. Elimination of antibiotic selectable markers from transgenics is a major hurdle for finding efficient and safe candidates. Herbicide tolerance genes might be attractive alternatives. In this study, a variant form of the 5-enoylpyruvyl shikimate...

متن کامل

Chlorophyll Fluorescence: A Novel Method to Screen for Herbicide Resistance

The susceptibility to Terbacil of six randomly selected strawberry cultivars (‘Aromas’, ‘Chambly’, ‘Harmonie’, ‘Kent’, ‘La Clé des Champs’ and ‘Seascape’) was analysed using chlorophyll florescence (CF) in comparison with visual observation, in an attempt to develop a method for use in a breeding programme to select herbicide-resistant strawberry lines. Terbacil was applied at one of five rates...

متن کامل

Site-Directed Mutagenesis, Expression and Biological Activity of E. coli 5-Enolpyruvylshikimate 3-Phosphate Synthase Gene

Site-directed mutagenesis (SDM) as a powerful technique was used to change two important and conserved amino acids in 5-enolpyruvylshikimate 3- phosphate synthase (EPSPS) gene of E. coli. The mutations changed glycine 96 to alanine and alanine 183 to threonine. These two amino acids are very important for intraction of the wide spectrum herbicide, glyphosate, to EPSP synthase enzymes. By design...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998